
The Embedded Linux Experts

LINUX Kernel Preemption

George Anzinger
Member Technical Staff
MontaVista Software, Inc.

The Embedded Linux Experts

Prior Art

n Other efforts to improve Linux latency

– RTAI

– Rtlinux

applications

Linux Kernel

Linux Drivers

Hardware

applications

Linux Kernel

Linux Drivers

Hardware RTlinux/RTIA

The Embedded Linux Experts

Prior Art

n Cost

– Latency to services

– Complexity

• Hard to design

• Non standard access to OS services

• Hard to debug

The Embedded Linux Experts

Goals

n MontaVista software wants to move the
standard Linux response times down

Required
Response

Time

Standard Linux
Environment

Special
RTlinux/ RTIA
Environment

M
ontaV

ista

M
ontaV

ista

The Embedded Linux Experts

Goals

n To put numbers on the goal, we would
like to see preemption times of:

~30 dispatch times,

About 250 microseconds on a

4-500mhz ix86 processor.

The Embedded Linux Experts

Assumptions

n The application is coded for RT:
– Pre-allocates and locks down memory.

– Allocates and controls task priorities using
standard system primitives.

The Embedded Linux Experts

Problems

n Long or indeterminate algorithms used on
the schedule path.

n Long preemption latencies.

n Too much work at the driver level.

The Embedded Linux Experts

Outline of the Talk

n We will examine the run list management
and the time slice computation code.
– We will take a look at MontaVista’s solutions.

n We will take a brief look at the history of
Linux to see how we got here.

n We will discuss the various problems and
MontaVista’s solutions.
– Spinlocks.

– Interrupts.

– Traps.

– Task state.

The Embedded Linux Experts

Outline Continued

n MontaVista’s solutions:
– Preemption count.

– Spinlocks -> pi mutex.

• Just what the heck is a pi mutex anyway?

– Big kernel lock.

• What it is.

• How we address it.

n Finally, we will look at:
– Where we are.

– What the results are to this point.

The Embedded Linux Experts

The Real Time Scheduler

n Problems with scheduler:
– Each call, it scans a run list containing all ready

or executing tasks.

• Looks for:
– Real time, highest priority task.
– Non real time, highest slice (with fuzz).

» What is fuzz?

n All that just takes too long.

The Embedded Linux Experts

Scheduler Solutions

Bit map

High_pri

Ready
Queue

task task

0

N

SCHED_OTHER

-1

The Embedded Linux Experts

Scheduler Ready Queue

n Each priority has its own list.

n SCHED_OTHER is priority 0.

n High_pri is updated when a higher priority
task comes into the ready queue.

n The bit map keeps track of which
priorities have tasks on them.

n The bit map is only searched when
high_pri is found to point at an empty list.

n The –1 is a stop bit. It stops the bit map
search at priority –1.

The Embedded Linux Experts

Linux Time Slicing

n Unix uses nice() to adjust task priority.
– Nice() takes values from –20 (high priority) to

19 (low priority).

– Linux uses this to define a slice of time:

– This value declines as p->counter-- each jiffy
that the task is found executing.

– When zero the task is preempted and will not
be reschedule until it gets another slice.

p->counter = (p->counter >>1) +
NICE_TO_TICKS(p->nice);

The Embedded Linux Experts

Linux Time Slicing

n Recalculating the Slices
– Recalculation is done when all slices in the run

list are zero, -- nothing to run.

– At this time a new slice is calculated for ALL
TASKS ON THE SYSTEM.

– Results in dormant tasks accumulating up to
twice their “normal” slice value.

• Tops out at about 6 recalculates.

• Means waking task will likely get the
processor.

– Problems:

• Doing all tasks on the system takes too
long.

• Making two passes thru the run list and one
thru all tasks takes WAY too long.

The Embedded Linux Experts

Squeezing Time Out of
Recalculate

n First, why:
– When recalculating the scheduler can not

dispatch ANY thing. Long schedule latencies.

n How:
– Keep track of total of slice time available in the

ready queue.

• Requires that running tasks not be in the
ready queue.

– If zero time in ready queue, do one pass to
update and select a new task.

– Don’t update other tasks until they come on the
ready queue.

The Embedded Linux Experts

For Inquiring Minds

if ((diff = runq.recalc - p->counter_recalc) != 0) {

p->counter_recalc = runq.recalc;

c = NICE_TO_TICKS(p->nice) << 1;

p->counter = diff > 8 ? c - 1 : /* max priority */

c + ((p->counter - c) >> diff);

}

runq.recalc is a system wide global, number of recalcs done

counter_recalc is number of recalcs done for this task

The Embedded Linux Experts

Scheduler SMP Issues

n Current scheduler keeps a list of CPUs and
their tasks.

n RT scheduler adds:
– Priority.

– Makes this a doubly linked list by priority.

n Why:
– When a new task comes on the RQ need only

test against one CPU.

• The one doing the lowest priority thing.

The Embedded Linux Experts

Preemption
How We Got Here

n The first Linux system ran all system
services to completion or till they blocked.

n Next it was expanded to SMP.
– A lock was put on the kernel code to prevent

more than one CPU at a time in the kernel.

n Over time finer grained locking has been
used more and more.

n It seems the kernel lock is on the way out
and may well be gone by 2.6.

n The kernel is still not preemptable except
for selected explicit calls to schedule().

The Embedded Linux Experts

Preemption
How We Are Doing It

n The kernel has SMP locking protecting all
the needed areas.

n Expand the SMP lock macros to indicate
areas that must not be preempted.

n In addition, protect:
– All interrupt code.

– All trap code.

– The scheduler itself.

The Embedded Linux Experts

Preemption Counter

n All of that is a lot of stuff to test to see if
it is ok to preempt so:
– We created a preemption counter to count the

reasons why we could not preempt.

– Inc the counter on a condition,

– Dec the counter when the condition clears.

n Test is reduced to:
If (!preempt_count && need_resched)

preempt_schedule();

The Embedded Linux Experts

Changes to Entry.S

n Manage the preemption count on trap
entry and trap and interrupt exit.

n Insure that the exit sequence will not miss
an allowed preemption.

The Embedded Linux Experts

Entry.S Flow Chart

Sys call

Save state

Do sys call

Soft irq

Ints off

signal

preempt

Restore state

0

0

0

1

1

1

Ints on
Do_soft irq()

Ints on
Do_signal()

Preempt off
Ints on

Schedule()
Preempt on

A

A

The Embedded Linux Experts

Run State Issue

n How Linux sleeps a task.
– Set the task state to something other than

running.

– Set up the wake up.

– Call schedule().

n Schedule() will take a task that is not in
the run state out of the run list.

n Consider preemption after the state
change but before the wake up set up.

The Embedded Linux Experts

Run State Solution

n For preemption we call
preempt_schedule().

n In preempt_schedule() we:

n In schedule() we treat a task with the
TASK_PREEMPTING flag as running.
– It stays in the run list.

– Gets rescheduled just like a running task.

– Schedule() clears the flag.

current->state |= TASK_PREEMPTING;
schedule();

The Embedded Linux Experts

Priority Inversion
Explained

Given mutex X and 3 tasks:
–L at low priority.

–M at medium priority.

–H at high priority.

Suppose L locks mutex X.

L is preempted by M, a long running task.

M is then preempted by H which wants X.

M is running instead of H!

The priority is inverted!

The Embedded Linux Experts

The Pi Mutex Solution

n Pi stands for priority inherit.

n A pi mutex gives the owner of a mutex
the priority of the highest priority waiter.

n The priority reverts when the owner exits.

n In our example, L would run at H’s
priority until L released the mutex.

The Embedded Linux Experts

struct pi_mutex {

volatile struct task_struct *owner;
struct list_head wait_list;
struct list_head owner_list;

};

struct __pi_mutex_wait_queue {

struct task_struct *task;

struct pi_mutex *mutex;

struct list_head task_list;

};

Pi Mutex Structures

The Embedded Linux Experts

Pi Mutex Structures

n In addition the task_struct is modified:
– A: int effprio; /*Effective priority of task */.

– B: struct __pi_mutex_wait_queue *pi_mutex;

– C: struct list_head owned_pi_mutex;

n The owned_pi_mutex list is a list of all the
contested pi_mutexs held by the task.

n The wait list, headed at the pi_mutex, is a
list of all waiters for the mutex.

n Both lists are in priority order.
– The priority of a mutex is the priority of the

highest priority waiter.

The Embedded Linux Experts

Managing Priority Lists

n For the RT scheduler, we have one or two
(if SMP) priority lists a task can be in.

n Adding the pi_mutex, adds another
priority list.

n Each of these lists needs a management
function to change priority.

n Problem:
– How do we know which list, if any, a task is in

so we know what function to call.

The Embedded Linux Experts

Priority List Solutions

n A location in the task structure holds a
pointer to the function.
– This pointer is set when the task is put in a

priority queue.

n A priority change for one task implies that
other tasks may also need to change.
– This implies recursion in the priority change

function.

n So all priority change functions are called
under a spin lock that must be recursive.

The Embedded Linux Experts

For Inquiring Minds

static struct task_struct *newprio_inuse;

static int newprio_inuse_count;

void set_newprio(struct task_struct * tptr, int
newprio)

{

if (newprio_inuse != current){

spin_lock_irq(&runqueue_lock);

newprio_inuse = current;

}

newprio_inuse_count++;

The Embedded Linux Experts

For Inquiring Minds -
Continued

if (! tptr->newprio) {

tptr->effprio = newprio;

}else if (tptr->effprio != newprio) {

tptr->newprio(tptr,newprio);

}

if (! --newprio_inuse_count){

newprio_inuse = 0;

spin_unlock_irq(&runqueue_lock);

}

}

The Embedded Linux Experts

Pi Mutex Overhead

n The entry code depends on (in ix86 land)
the cmpxchg instruction:

int cmpxchg(int *x,int new, int old)

{

if (*x == old) {

*x = new;

return old;

}

return *x;

}

The Embedded Linux Experts

Where We Use Pi Mutex

n We are replacing long held spin locks with
the pi mutex.

n If preemption is not configured, the code
will generate the standard spin lock.

n SPINTEX is the name we are currently
using.

n Short held spin locks will use either
interrupt off or preempt count protection.
– Type of protection to be chosen by architecture.

The Embedded Linux Experts

The Pi Mutex Entry

n Entry is:

n Exit is:

if (old = cmpxchg(&mutex,current,0))

pi_mutex_entry_failed(&x,old);

if (! cmpxchg(&mutex,0,current) == current)

pi_mutex_exit_failed(&x);

The Embedded Linux Experts

Pi Mutex Notes

n None of the lists are needed or
constructed unless there is contention.

n The contender builds the lists, etc.

n The exit code tears them down.

n On exit, the owner:
– Assigns the mutex to the first waiter.

– Wakes up the new owner.

– Readjusts his own priority.

n For UP systems we do not need “lock”ed
access.
– Contending only with an interrupt.

The Embedded Linux Experts

Pi Mutex Overhead Vs
Spin Lock

n There is the cmpxchg overhead on UP
systems.
– Hard to beat “;”

n For SMP entry should be about the same.
– Both spin lock and pi mutex use “lock”ed

memory access which is most of the overhead.

n Exit cost more.
– Spin lock exit is a un”lock”ed store byte.

– Pi mutex uses the “lock”ed cmpxchg.

n But, spin lock stalls the contender, pi
mutex allows contender to do other work.

The Embedded Linux Experts

The Big Kernel Lock (BKL)

n As we said before this is on the way out,
however, it is still used and is a problem.

n Converting the BKL to a pi mutex
presents problems:
– It is used prior to the scheduler init code during

bring up.

– It is released and reacquired by schedule()
when schedule() is called while the BKL is held.

– Implies recursion.

The Embedded Linux Experts

BKL Solutions

n Convert pi mutex to spin:

n Schedule() must not release the BKL if
entered for preemption.
– Use the TASK_PTEEMPTING flag.

– Must not try to reacquire if it is already held.

• Easy to do with pi mutex (see owner field).

n With care, schedule() can recur to wait for
this lock.
– Must not attempt to release BKL here.

• Same as preemption entry.

while(pi_mutex_tryenter(&mutex));

The Embedded Linux Experts

The Latest Patch Is:

n The MontaVista web site is at:
– www.mvista.com

n Latest patch will be found at:

ftp://ftp.mvista.com/pub/Area51/preemptable_kernel/

The Embedded Linux Experts

Status

n Most of the code is written.

n Conversion of the BKL will happen once
SMP runs reliably.

n Current numbers are:
– Change in time to do a kernel compile:

– Max measured preemption delay:

