
The Embedded Linux Experts

LINUX Kernel Preemption

George Anzinger
Member Technical Staff
MontaVista Software, Inc.



The Embedded Linux Experts

Prior Art

n Other efforts to improve Linux latency
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Prior Art

n Cost

– Latency to services

– Complexity

• Hard to design

• Non standard access to OS services

• Hard to debug
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Goals

n MontaVista software wants to move the 
standard Linux response times down
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Goals

n To put numbers on the goal, we would 
like to see preemption times of:

~30 dispatch times,

About 250 microseconds on a

4-500mhz ix86 processor.
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Assumptions

n The application is coded for RT:
– Pre-allocates and locks down memory.

– Allocates and controls task priorities using 
standard system primitives.
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Problems

n Long or indeterminate algorithms used on 
the schedule path.

n Long preemption latencies.

n Too much work at the driver level.
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Outline of the Talk

n We will examine the run list management 
and the time slice computation code.
– We will take a look at MontaVista’s solutions.

n We will take a brief look at the history of 
Linux to see how we got here.

n We will discuss the various problems and 
MontaVista’s solutions.
– Spinlocks.

– Interrupts.

– Traps.

– Task state.



The Embedded Linux Experts

Outline Continued

n MontaVista’s solutions:
– Preemption count.

– Spinlocks -> pi mutex.

• Just what the heck is a pi mutex anyway?

– Big kernel lock.

• What it is.

• How we address it.

n Finally, we will look at:
– Where we are.

– What the results are to this point.
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The Real Time Scheduler

n Problems with scheduler:
– Each call, it scans a run list containing all ready 

or executing tasks.

• Looks for:
– Real time, highest priority task.
– Non real time, highest slice (with fuzz).

» What is fuzz?

n All that just takes too long.
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Scheduler Solutions
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Scheduler Ready Queue

n Each priority has its own list.

n SCHED_OTHER is priority 0.

n High_pri is updated when a higher priority 
task comes into the ready queue.

n The bit map keeps track of which 
priorities have tasks on them.

n The bit map is only searched when 
high_pri is found to point at an empty list.

n The –1 is a stop bit.  It stops the bit map 
search at priority –1.
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Linux Time Slicing

n Unix uses nice() to adjust task priority.
– Nice() takes values from –20 (high priority) to 

19 (low priority).

– Linux uses this to define a slice of time:

– This value declines as p->counter-- each jiffy 
that the task is found executing.

– When zero the task is preempted and will not 
be reschedule until it gets another slice.

p->counter = (p->counter >>1) + 
NICE_TO_TICKS(p->nice);
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Linux Time Slicing

n Recalculating the Slices
– Recalculation is done when all slices in the run 

list are zero, -- nothing to run.

– At this time a new slice is calculated for ALL 
TASKS ON THE SYSTEM.

– Results in dormant tasks accumulating up to 
twice their “normal” slice value.

• Tops out at about 6 recalculates.

• Means waking task will likely get the 
processor.

– Problems:

• Doing all tasks on the system takes too 
long.

• Making two passes thru the run list and one 
thru all tasks takes WAY too long.
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Squeezing Time Out of 
Recalculate

n First, why:
– When recalculating the scheduler can not 

dispatch ANY thing.      Long schedule latencies.

n How:
– Keep track of total of slice time available in the 

ready queue.  

• Requires that running tasks not be in the 
ready queue.

– If zero time in ready queue, do one pass to 
update and select a new task.

– Don’t update other tasks until they come on the 
ready queue.
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For Inquiring Minds

if ((diff = runq.recalc - p->counter_recalc) != 0) {

p->counter_recalc = runq.recalc;

c = NICE_TO_TICKS(p->nice) << 1;

p->counter = diff > 8 ? c - 1 :  /* max priority */

c + ((p->counter - c) >> diff);

}

runq.recalc is a system wide global, number of recalcs done

counter_recalc is number of recalcs done for this task
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Scheduler SMP Issues

n Current scheduler keeps a list of CPUs and 
their tasks.

n RT scheduler adds:
– Priority.

– Makes this a doubly linked list by priority.

n Why:
– When a new task comes on the RQ need only 

test against one CPU.

• The one doing the lowest priority thing.
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Preemption 
How We Got Here

n The first Linux system ran all system 
services to completion or till they blocked.

n Next it was expanded to SMP.
– A lock was put on the kernel code to prevent 

more than one CPU at a time in the kernel.

n Over time finer grained locking has been 
used more and more.

n It seems the kernel lock is on the way out 
and may well be gone by 2.6.

n The kernel is still not preemptable except 
for selected explicit calls to schedule().
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Preemption
How We Are Doing It

n The kernel has SMP locking protecting all 
the needed areas.

n Expand the SMP lock macros to indicate 
areas that must not be preempted.

n In addition, protect:
– All interrupt code.

– All trap code.

– The scheduler itself.
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Preemption Counter

n All of that is a lot of stuff to test to see if 
it is ok to preempt so:
– We created a preemption counter to count the 

reasons why we could not preempt.

– Inc the counter on a condition,

– Dec the counter when the condition clears.

n Test is reduced to:
If (!preempt_count && need_resched)

preempt_schedule();
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Changes to Entry.S

n Manage the preemption count on trap 
entry and trap and interrupt exit.

n Insure that the exit sequence will not miss 
an allowed preemption.
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Entry.S Flow Chart
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Run State Issue

n How Linux sleeps a task.
– Set the task state to something other than 

running.

– Set up the wake up.

– Call schedule().

n Schedule() will take a task that is not in 
the run state out of the run list.

n Consider preemption after the state 
change but before the wake up set up.
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Run State Solution

n For preemption we call 
preempt_schedule().

n In preempt_schedule() we:

n In schedule() we treat a task with the  
TASK_PREEMPTING flag as running.
– It stays in the run list.

– Gets rescheduled just like a running task.

– Schedule() clears the flag.

current->state |= TASK_PREEMPTING;
schedule();
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Priority Inversion 
Explained

Given mutex X and 3 tasks:
–L at low priority.

–M at medium priority.

–H at high priority.

Suppose L locks mutex X.

L is preempted by M, a long running task.

M is then preempted by H which wants X.

M is running instead of H!

The priority is inverted!
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The Pi Mutex Solution

n Pi stands for priority inherit.

n A pi mutex gives the owner of a mutex 
the priority of the highest priority waiter.

n The priority reverts when the owner exits.

n In our example, L would run at H’s 
priority until L released the mutex.
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struct pi_mutex {

volatile struct task_struct *owner;  
struct list_head wait_list;           
struct list_head owner_list;          

};

struct __pi_mutex_wait_queue {

struct task_struct *task;

struct pi_mutex *mutex;

struct list_head task_list;

};

Pi Mutex Structures
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Pi Mutex Structures

n In addition the task_struct is modified:
– A: int effprio;  /*Effective priority of task */.

– B: struct __pi_mutex_wait_queue *pi_mutex;

– C: struct list_head owned_pi_mutex;

n The owned_pi_mutex list is a list of all the 
contested pi_mutexs held by the task.

n The wait list, headed at the pi_mutex, is a 
list of all waiters for the mutex.

n Both lists are in priority order.
– The priority of a mutex is the priority of the 

highest priority waiter.
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Managing Priority Lists

n For the RT scheduler, we have one or two 
(if SMP) priority lists a task can be in.

n Adding the pi_mutex, adds another 
priority list.

n Each of these lists needs a management 
function to change priority.

n Problem:
– How do we know which list, if any, a task is in 

so we know what function to call.
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Priority List Solutions

n A location in the task structure holds a 
pointer to the function.
– This pointer is set when the task is put in a 

priority queue.

n A priority change for one task implies that 
other tasks may also need to change.
– This implies recursion in the priority change 

function.

n So all priority change functions are called 
under a spin lock that must be recursive.
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For Inquiring Minds

static struct task_struct *newprio_inuse;

static int newprio_inuse_count;

void set_newprio(struct task_struct * tptr, int 
newprio)

{

if ( newprio_inuse != current){

spin_lock_irq(&runqueue_lock);

newprio_inuse = current;

}

newprio_inuse_count++;
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For Inquiring Minds -
Continued

if (! tptr->newprio ) {

tptr->effprio = newprio;

}else if ( tptr->effprio != newprio) {

tptr->newprio(tptr,newprio);

}

if ( ! --newprio_inuse_count ){

newprio_inuse = 0;

spin_unlock_irq(&runqueue_lock);

}

}
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Pi Mutex Overhead

n The entry code depends on (in ix86 land) 
the cmpxchg instruction:

int cmpxchg(int *x,int new, int old)

{

if (*x == old) {

*x = new;

return old;

}

return *x;

}
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Where We Use Pi Mutex

n We are replacing long held spin locks with 
the pi mutex.

n If preemption is not configured, the code 
will generate the standard spin lock.

n SPINTEX is the name we are currently 
using.

n Short held spin locks will use either 
interrupt off or preempt count protection.
– Type of protection to be chosen by architecture.
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The Pi Mutex Entry

n Entry is:

n Exit is:

if (old = cmpxchg(&mutex,current,0))

pi_mutex_entry_failed(&x,old);

if ( ! cmpxchg(&mutex,0,current) == current)

pi_mutex_exit_failed(&x);
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Pi Mutex Notes

n None of the lists are needed or 
constructed unless there is contention.

n The contender builds the lists, etc.

n The exit code tears them down.

n On exit, the owner:
– Assigns the mutex to the first waiter.

– Wakes up the new owner.

– Readjusts his own priority.

n For UP systems we do not need “lock”ed 
access.
– Contending only with an interrupt.
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Pi Mutex Overhead Vs 
Spin Lock

n There is the cmpxchg overhead on UP 
systems.
– Hard to beat “;”

n For SMP entry should be about the same.
– Both spin lock and pi mutex use “lock”ed 

memory access which is most of the overhead.

n Exit cost more.
– Spin lock exit is a un”lock”ed store byte.

– Pi mutex uses the “lock”ed cmpxchg.

n But, spin lock stalls the contender, pi 
mutex allows contender to do other work.
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The Big Kernel Lock (BKL)

n As we said before this is on the way out, 
however, it is still used and is a problem.

n Converting the BKL to a pi mutex 
presents problems:
– It is used prior to the scheduler init code during 

bring up.

– It is released and reacquired by schedule() 
when schedule() is called while the BKL is held.

– Implies recursion.
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BKL Solutions

n Convert pi mutex to spin:

n Schedule() must not release the BKL if 
entered for preemption.
– Use the TASK_PTEEMPTING flag.

– Must not try to reacquire if it is already held.

• Easy to do with pi mutex (see owner field).

n With care, schedule() can recur to wait for 
this lock.
– Must not attempt to release BKL here.

• Same as preemption entry.

while(pi_mutex_tryenter(&mutex));
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The Latest Patch Is:

n The MontaVista web site is at:
– www.mvista.com

n Latest patch will be found at:

ftp://ftp.mvista.com/pub/Area51/preemptable_kernel/
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Status

n Most of the code is written.  

n Conversion of the BKL will happen once 
SMP runs reliably.

n Current numbers are:
– Change in time to do a kernel compile:

– Max measured preemption delay:


