LINUX Kernel Preemption

MONTAVISTA'

S O F T W A R E

George Anzinger V|
Member Technical Staff

MontaVista Software, Inc. m

ﬂ Prior Art

PONaVE
m Other efforts to improve Linux latency
— RTAI
— Rtlinux
applications applications
Linux Kerne Linux Kernel
Linux Drivers Linux Drivers
Hardware RTIInux/RTIA
Hardware
V|

m The Embedded Linux Experts

ﬂ Prior Art

'''''''

m Cost
— Latency to services
— Complexity
= Hard to design
= Non standard access to OS services

e Hard to debug

m The Embedded Linux Experts

ﬂ Goals

ikl :
= MontaVista software wants to move the
standard Linux response times down
=< =<
o o
= =
QD QD
‘ ‘ < Standard Linux <
| e Environment e
Required
e Spe
RTlinux/ RTIA
Environment
V|

m The Embedded Linux Experts

ﬂ Goals

i
= To put numbers on the goal, we would
like to see preemption times of:

~30 dispatch times,
About 250 microseconds on a
4-500mhz ix86 processor.

V|

m The Embedded Linux Experts

ﬂ Assumptions

i
m The application is coded for RT:
— Pre-allocates and locks down memory.
— Allocates and controls task priorities using
standard system primitives.
V|

m The Embedded Linux Experts

ﬂ Problems

'''''''

= Long or indeterminate algorithms used on
the schedule path.

m Long preemption latencies.

® Too much work at the driver level.

The Embedded Linux Experts

ﬂ Outline of the Talk

IIIIII

= We will examine the run list management
and the time slice computation code.

— We will take a look at MontaVista’'s solutions.

= We will take a brief look at the history of
Linux to see how we got here.

= We will discuss the various problems and
MontaVista’s solutions.

— Spinlocks.
— Interrupts.
— Traps.

V| — Task state.

m The Embedded Linux Experts

Outline Continued

= MontaVista’s solutions:
— Preemption count.
— Spinlocks -> pi mutex.
= Just what the heck is a pi mutex anyway?
— Big kernel lock.
< What it is.
- How we address it.

= Finally, we will look at:
— Where we are.
— What the results are to this point.

The Embedded Linux Experts

ﬂ The Real Time Scheduler

MONTAVISTA
5 0O FTW A R E

m Problems with scheduler:

— Each call, it scans a run list containing all ready
or executing tasks.

e Looks for:
— Real time, highest priority task.

— Non real time, highest slice (with fuzz).
» What is fuzz?

= All that just takes too long.

The Embedded Linux Experts

ﬂ Scheduler Solutions

,,,,,,, N —
>High_pri
— Em Tl
Bit map I_
task task
W 0 1 SCHED OTHER

Ready
- Queue
- The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

Scheduler Ready Queue

m Each priority has its own list.
m SCHED OTHER is priority O.

= High_ pri is updated when a higher priority
task comes into the ready queue.

= The bit map keeps track of which
priorities have tasks on them.

m The bit map is only searched when
high_pri is found to point at an empty list.

m The —1 is a stop bit. It stops the bit map
search at priority —1.

The Embedded Linux Experts

ﬂ Linux Time Slicing

i
= Unix uses nice() to adjust task priority.
— Nice() takes values from —20 (high priority) to
19 (low priority).
— Linux uses this to define a slice of time:
p-=>counter = (p->counter >>1) +
NICE_TO_ TICKS(p->nice);
— This value declines as p->counter-- each jiffy
that the task is found executing.
— When zero the task is preempted and will not
be reschedule until it gets another slice.
V|

m The Embedded Linux Experts

ﬂ Linux Time Slicing

ol _ _
m Recalculating the Slices

— Recalculation is done when all slices in the run
list are zero, -- nothing to run.

— At this time a new slice is calculated for ALL
TASKS ON THE SYSTEM.

— Results in dormant tasks accumulating up to
twice their “normal” slice value.

= Tops out at about 6 recalculates.

- Means waking task will likely get the
processor.

— Problems:

- Poing all tasks on the system takes too
ong.

= Making two passes thru the run list and one
thru all tasks takes WAY too long.

V|

m

The Embedded Linux Experts

ﬂ Squeezing Time Out of
Recalculate

i
m First, why:

— When recalculating the scheduler can not
dispatch ANY thing. |:>Long schedule latencies.

m How:

— Keep track of total of slice time available in the
ready queue.

= Requires that running tasks not be in the
ready queue.

— If zero time in ready queue, do one pass to
update and select a new task.

— Don’t update other tasks until they come on the
ready queue.

V|

m The Embedded Linux Experts

ﬂ For Inquiring Minds

okl

If ((diff =rung.recalc - p->counter_recalc) !=0) {
p->counter recalc = rung.recalc;
C=NICE_TO_TICKY(p->nice) << 1,
p->counter =diff >8?c-1: /* max priority */

c + ((p->counter - c¢) >> diff);

}

rung.recalcisasystem wide global, number of recalcsdone

counter _recalcisnumber of recalcsdonefor thistask

V|

m The Embedded Linux Experts

ﬂ Scheduler SMP Issues

LLLLLL

m Current scheduler keeps a list of CPUs and
their tasks.

m RT scheduler adds:
— Priority.
— Makes this a doubly linked list by priority.

= Why:

— When a new task comes on the RQ need only
test against one CPU.

= The one doing the lowest priority thing.

V|

m The Embedded Linux Experts

ﬂ Preemption
How We Got Here

MONTAVISTA
5 0O FTW A R E

= The first Linux system ran all system
services to completion or till they blocked.

= Next it was expanded to SMP.

— A lock was put on the kernel code to prevent
more than one CPU at a time in the kernel.

= Over time finer grained locking has been
used more and more.

m It seems the kernel lock is on the way out
and may well be gone by 2.6.

m The kernel is still not preemptable except
for selected explicit calls to schedule().

The Embedded Linux Experts

ﬂ Preemption
How We Are Doing It

MONTAVISTA
5 0O FTW A R E

= The kernel has SMP locking protecting all
the needed areas.

m Expand the SMP lock macros to indicate
areas that must not be preempted.
= In addition, protect:
— All interrupt code.
— All trap code.
— The scheduler itself.

V|

m The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

Preemption Counter

= All of that is a lot of stuff to test to see If
It Is ok to preempt so:

— We created a preemption counter to count the
reasons why we could not preempt.

— Inc the counter on a condition,
— Dec the counter when the condition clears.

m Test Is reduced to:

If ('preempt_count & & need resched)
preempt_schedule();

The Embedded Linux Experts

ﬂ Changes to Entry.S

MONTAVISTA
5 0O FTW A R E

= Manage the preemption count on trap
entry and trap and interrupt exit.

= Insure that the exit sequence will not miss
an allowed preemption.

The Embedded Linux Experts

ﬂ Entry.S Flow Chart

MoNTAVisTA ;

[S}/scalll | Intsoff |
v
| Savestate| ints or
Do softirq()
Do scaJI
l 24 l Preempt off
@ Intson
Schedulg()
Preempt on
w Intson
Do signal()

| Restorestate|

The Embedded Linux Experts

ﬂ Run State Issue

i
= How Linux sleeps a task.

— Set the task state to something other than
running.

— Set up the wake up.
— Call schedule().

m Schedule() will take a task that is not In
the run state out of the run list.

m Consider preemption after the state
change but before the wake up set up.

V|

m The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

Run State Solution

m For preemption we call
preempt_schedule().

= In preempt_schedule() we:

current->gtate |=- TASK_PREEMPTING,;
schedule();

= In schedule() we treat a task with the
TASK PREEMPTING flag as running.

— It stays In the run list.
— Gets rescheduled just like a running task.
— Schedule() clears the flag.

The Embedded Linux Experts

ﬂ Priority Inversion
Explained

i
Given mutex X and 3 tasks:
—L at low priority.
—M at medium priority.
—H at high priority.

Suppose L locks mutex X.
L is preempted by M, a long running task.
M is then preempted by H which wants X.
M is running instead of H!

The priority is inverted!
V|

m The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

The P1 Mutex Solution

m Pi stands for priority inherit.

= A pi mutex gives the owner of a mutex
the priority of the highest priority waiter.

= The priority reverts when the owner exits.

= In our example, L would run at H’s
priority until L released the mutex.

The Embedded Linux Experts

ﬂ P1 MuteXx Structures

PONaVE

struct pi_ mutex {
volatile struct task struct *owner;
struct list _head wait_list;
struct list _head owner_list;

2

struct __ pi_mutex_ wait_queue {
struct task struct *task;
struct pi__mutex *mutex;
struct list _head task_list;

V| 1

m The Embedded Linux Experts

ﬂ P1 MuteXx Structures

MONTAVISTA
5 0O FTW A R E

= In addition the task_ struct is modified:
— A: Iint effprio; /*Effective priority of task */.
— B: struct __ pi_mutex_ wait_queue *pi_mutex;
— C: struct list_head owned_ pi_mutex;

m The owned_ pi_mutex list is a list of all the
contested pi_mutexs held by the task.

= The wait list, headed at the pi_mutex, Is a
list of all waiters for the mutex.

= Both lists are in priority order.

— The priority of a mutex is the priority of the
highest priority waiter.

The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

Managing Priority Lists

m For the RT scheduler, we have one or two
(if SMP) priority lists a task can be In.

= Adding the pi_mutex, adds another
priority list.

m Each of these lists needs a management
function to change priority.

®m Problem:

— How do we know which list, if any, a task is in
so we know what function to call.

The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

Priority List Solutions

m A location In the task structure holds a
pointer to the function.

— This pointer is set when the task is put in a
priority queue.

m A priority change for one task implies that
other tasks may also need to change.

— This implies recursion in the priority change
function.

m So all priority change functions are called
under a spin lock that must be recursive.

The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

For Inquiring Minds

static struct task struct *newprio_inuse;

static int newprio_inuse_count;

void set_newprio(struct task_ struct * tptr, int
newprio)

{

If (newprio_inuse = current){
spin_lock Irq(&runqueue_lock);
newprio_inuse = current;

s

newprio_inuse_count+-+;

The Embedded Linux Experts

For Inguiring Minds -
continued
okl
It (! tptr-=newprio) {

tptr-=effprio = newprio;

Yelse if (tptr-=effprio '= newprio) {
tptr-=newprio(tptr,newprio);

¥

If (! --newprio_inuse_count){
newprio_inuse = O;
spin_unlock_irq(&runqueue_lock);

¥

3 h

m The Embedded Linux Experts

ﬂ P1 Mutex Overhead

Mownvlsm'

50 F T W T

m The entry code depends on (in ix86 land)
the cmpxchg instruction:

Int cmpxchg(int *x,int new, int old)
{
If (*x==old) {
*X = new;
return old;

}

return *x;
4

m

}

The Embedded Linux Experts

ﬂ Where We Use P1I Mutex

MONTAVISTA
5 0O FTW A R E

= We are replacing long held spin locks with
the pi mutex.

= If preemption is not configured, the code
will generate the standard spin lock.

m SPINTEX is the name we are currently
using.

= Short held spin locks will use either
Interrupt off or preempt count protection.

— Type of protection to be chosen by architecture.

V|

m The Embedded Linux Experts

ﬂ The P1 Mutex Entry

'''''''

m Entry is:

If (old = cmpxchg(& mutex,current,0))

pi_mutex_entry failed(& x,0ld);

m EXItis:

If (! cmpxchg(& mutex,0,current) == current)

pi_mutex_exit_failed(&x);

The Embedded Linux Experts

MONTAVISTA
5 0O FTW A R E

P1 Mutex Notes

= None of the lists are needed or
constructed unless there Is contention.

m The contender builds the lists, etc.
®m The exit code tears them down.

= On exit, the owner:
— Assigns the mutex to the first waiter.
— Wakes up the new owner.
— Readjusts his own priority.
= For UP systems we do not need “lock”ed
adCCesSsS.
— Contending only with an interrupt.

The Embedded Linux Experts

ﬂ P1 Mutex Overhead Vs
Spin Lock

MONTAVISTA

IIIIII

m There is the cmpxchg overhead on UP
systems.

— Hard to beat “;”

m For SMP entry should be about the same.

— Both spin lock and pi mutex use “lock”ed
memory access which is most of the overhead.

= EXit cost more.
— Spin lock exit is a un”lock”ed store byte.
— PiI mutex uses the “lock”ed cmpxchg.

= But, spin lock stalls the contender, pi
mutex allows contender to do other work.

The Embedded Linux Experts

ﬂ The Big Kernel Lock (BKL)

IIIIII

= As we said before this is on the way out,
however, it is still used and is a problem.

= Converting the BKL to a pi mutex
presents problems:

— It i1s used prior to the scheduler init code during
bring up.

— It is released and reacquired by schedule()
when schedule() is called while the BKL is held.

— Implies recursion.

V|

m The Embedded Linux Experts

ﬂ BKL Solutions

i
= Convert pi mutex to spin:

while(pi_mutex_tryenter (& mutex));

m Schedule() must not release the BKL if
entered for preemption.

— Use the TASK_PTEEMPTING flag.

— Must not try to reacquire if it is already held.
- Easy to do with pi mutex (see owner field).

= With care, schedule() can recur to wait for
this lock.

— Must not attempt to release BKL here.
V| - Same as preemption entry.

m The Embedded Linux Experts

ﬂ The Latest Patch Is:

MONTAVISTA'
= The MontaVista web site iIs at:
— WWW.Mmvista.com
m Latest patch will be found at:
ftp://ftp.mvista.com/pub/Areas51/preemptable kernel/
V|

m The Embedded Linux Experts

ﬂ Status

'''''''

m Most of the code iIs written.

m Conversion of the BKL will happen once
SMP runs reliably.

m Current numbers are:
— Change in time to do a kernel compile:
— Max measured preemption delay:

V|

m The Embedded Linux Experts

